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On the Exponential Convergence of the h-p Version for

Boundary Element Galerkin Methods on Polygons

I. Babuska, B. Q. Guo. E. P. Stephan

1. Introduction

Most research for the boundary element method (BEM) has been carried out in the framework
of the h-version [11], [13], {28] where accuracy is achieved by decreasing the mesh size h, while keeping
the degree p of piecewise polynomials fixed. For this method several detailed results. including
asymptotic rates of convergence for both first-kind and second-kind integral equations are well-known
(see {21], [28]). The basic idea of the above convergence proofs is the observation that for strongly
elliptic operators one obtains quasioptimal convergence in the energy norm for any Galerkin scheme
with conforming boundary elements (see [27}). This result has been used in {25] and [26] to analyze the
p- and h-p versions with quasiuniform mesh for BEM for some first kind integral equation on a
polygon I'. Those versions for BEM have been recently introduced (see [1}, [2], (18], [22], [23]). In the
p-version a fixed mesh with constant h is used, and accuracy is achieved by increasing the degree p of
the polynomials used as boundary elements. The h-p version combines the iwu approaches. If one uses
a quasiuniform mesh on the polygon I' and if the singularity of the solution of the integral equation is
located at vertices, the rate of convergence for the p-version of the boundary element method (BEM) is
twice that of the h-version (see [25], [26]) for some first kind integral equations. These resuits have
been known for the finite element method where these two extension processes (p- and h-p version)
have been thoroughly investigated in a series of papers (3], [9], 10, [8], [14]. Furthermore. for the
finite element method on a geometric mesh it has been shown in {17] that under proper assumptions
satisfied usually in practice, namely that the given data are piecewise analytic, the h-p version has an
exponential rate of convergence with respeci to the number of degrees of freedom while the h- and p-
versions have only a polynomial rate. In this paper we show the corresponding result for the boundary
element method, i.e., if one uses a geometric mesh Tz on the boundary T which is graded towards the
vertices, then the convergence rate of the Galerkin solution for the underlying boundary integral
equation is exponential. We consider both the Dirichlet a ... tn~ Neumann problem for the Laplacian
in a plane polygonal domain and solve them via first-kinu :gral equations on I' with a weakly

singular and hypersingular integral operator V and D, respectively. It is known [13] that the operator

V of the single layer poteatial is a continuous, bijective mapping from the Sobolev space H-I/Q(F) onto
1/2
H

(T) if for the conformal radius of the polygon T there holds Cap(I) # 1. From [12] we have that




the operator D of the normal derivative of the double layer potential maps HL/Q(I') continyousiy and

T -1
bijectively onto H &

(F). As one of our main results we show that if the given data are piecewise
analytic then the solutions of the integral equations are also piecewise analytic. i.e.. for given data in

0.1 1,2
some countable normed space g € B; (I') we have u € B; (T') satisfies
Du = (1-K')gon T, (L.h

1,2 <,
whereas for g € Bj (I) N C°(T) we have 3U & B3 () satisfies

du _ , )
VB_D = (1+K)gon T, (1.2}

where K,K' are the operators of the double layer potential and its adjoint.

k€
In Section 2 we introduce the weighted Sobolev spaces Hy () (k > ¢ > 0) and the countable
(4
normed spaces Bg(2). We quote some related trace and extension theorems from (6] together with the
existence results of the solation u € B;(Q) of the Neumann and Dirichlet boundary value problem.

respectively.

In Section 3 we consider the integral equation (1.1} on T' governing the Neumann problem and

]

prove the above mentioned existence and regularity result for its solution u € Bg (). Then we
present our geometric mesh T, on the boundary curve I for an L-shaped domain and the corresponding
conforming boundary element space ép([‘:) consisting of continuous piecewise polynomials of
increasing degree where linears are used on the smallest subinterval, quadratics on the next larger
subinterval and so forth. Then we show (Theorem 3.4) that the Galerkin solution u, € SP(T';) for
{1.1) converges in H’“(r) with exponential rate towards the exact solution.

In Section 4 we present the corresponding results for the Dirichlet problem by showing that the
solution g—g- of the integral equation (1.2) belongs to B%l(l‘) and that its Galerkin solution ¥, €

S?~!(T';) converges exponentially in 2 V3(D).

2. Preliminary

Let € R? be a bounded domain whose curvilinear boundary 9 is a piecewise analytic curve
I = UT,, where T; is an open arc connecting the vertices A; and A,,, (A, = AM+1)‘ We denote
i=1
the internal angle at A; by w, and assume 0 < w; < 27,1 <i <M.

Let H5(Q), k > 0 integer, denote the usual Sobolev space (see [20]), i.e.,
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[4%)

2
HY ) = {u] % HD°u||L2(Q = lull? <}

0<lal<k G
where a = (a,.a,). a, > 0 integer, 1 = 1,2, laj = a, + a,. and
NEY
Déu =9 _U_ _ :
T T g

Since Q is a Lipschitz domain any u = H*(Q) can be extended to BH*(R?) (see 24]). Therefore

Hk_l/g(l') is defined as the restriction on I of functions in E*(Q) for integralk > 1, i.e..
B 5T = {ulp:u eHY @)
with
Iellge-tray = oL Ml
and fork < 0 |
B2y = (H-472()) (dual space).

Let r,(x) = dist(x;,A;), 8 = (3,.3,.. Bayg) be an M-tuple of real numbers 0 < 3, < 1. For
{

any integer k > 0 we shall write 3+k = (3, +k.35+k,... 3y +k). and $3 4(x) = 11 r‘3 &k(x). We

=1
define the weighted Sobolev space for integers k and £,k > € > 0, by 1

k£
e e—lr H a
Hs (O={ajue BT O)if € > 0, “Q5+|°|-¢D u”L-_,(Q) < ooford < € < la| <k}
and the countable noemed space for £ > 0

Be(a) = {u e B54Q), vk > ¢, 19,,,_¢ Dully gy < cdt-4(x— oy

(@)

for |a| = k = ¢ €+1...., with C > 1,d > 1 independent of k}

The space H. -1/2.8- 1/2(1‘) (resp. B,g Y3Try), k, € mteger, k > € > 0, is the trace space of

£
Hp (Q), (resp. a,(m) ie., for any g € H5™/2E73(DY (resp. BE-1/%(T)) there exists G € Hy (Q)




(resp. Bg(Q)) such that Gir = g, and

el | = inf |G|
H -172.8-1/2 i k.l
Hs Yiry Clir=s gy (q)

The analogous definition of the weighted Sobolev spaces and countable normed spaces on the

interval I = [a.b], a.b € R. we quote from [{}:
For k > € > 0 integer,
el () . LA (m)
Hy (I) = {ujue B*7 (1) if € > 0, ,]<I>5+m_e u (X)HLQ(I) < 2for0 £€<m <k}
and for £ > 0

¢ £ i k-4
B(D)-= {ue Hz (. Vk2¢l|e; < Cd™ (k=g

(x)
per- (X)HLQ(I)

fork = £,0+1,... with C > 1.d > 1 independent of k}

: 2 B ik—t o .
where @, 400 = [T #5780, 1,00 = k=al, 1200 = e=b], 8 = (3,32, 0< 31 3 < 1.
i=1 k.2, ¢,
For any I'; € T the spaces H[s) J(I‘]) and Ba‘;(l‘j) are defined with the help of a smooth map
Y ¢ k0 Mkl ¢
[ — T, via the spaces Hz (I) and Bz(I). We define Hy (I) := .ﬂlﬂbjj(l‘;) and Bx(l) :=
¢, =

M : L . =l
_nlsg’j(rj) with & = (f,ly) and § = (B85 By, 3, = (3,1.8,2). We shall write
_]:

BJ» > Bj, if BL,‘ > Bj,k' k = 1,2, and > 3 if [?j > 3.,1 <j < M. For any real number s we

Pl
shal) write [3’- > s (resp. B > s)if B“ > s (resp. Bj > s).

It is difficult to verify whether a function on T belongs to the spaces qu/z'e_l/z(l‘) and

£l
Bf;“/?(r). On the contrary the spaces H; (') and Bg([‘) characterize the traces of functions of

£l
Hg () and Bg(Q) on I' in a precisely verifiable manner (see Theorem 2.1). Theorein 2.2 deals with

the extension of functions from I to ).

kL
Theorem 2.1. (cf. Theorems 4.1 and 4.4 of [6]). Letu € Bg(Q) (resp. Hg (), € = 1,2, k > €+1,
- k-1
then for 1 <i < M, ulp € Bgil(r,-) (resp. Hp () wth




o

3,

€ (3,415 3.0 = 125 < 3,3, <1 (2.1an

kl
oruip € Bgt(f“) {resp. Hg. (T))) with

. ]

3.,€(3. 8, +)f0< 3.3, < 2 1b

20—

Theorem 2.2. (cf. Theorems 4.3 and 4.5 of [6]). Let g be defined oa I and o, = g r-
k.1 ) , ' .
(1) If g € CT), and g, € B (T,) (resp. H3 ([, k > 2) for0 < 3, <} org, € Bi T, iresp
k.2 - n ED
H; (I,). k > Q)for%, < 3, < 1,1 <1< M, then there erists G € B,-iQ} iresp. H:-(Q»" such that

k.0 . . P
(n) If g, € B3 (T,) (resp. Hz (T,), k 2 1) for 0 < 3, < L org, € Bi'[, resp Hi (T,)) for

. k1
1< 8, < 1.1 <i<M, then there exists G € B;-(Q) (resp. Hg* () such that G = g.

In (1) and (n1) 3° ="(;’:7;,...,£3i4) with 3] satisfying

[ %)
[
—

»/3: = m&‘(B.-l,z’Bn)v Bi.j = 3.‘,,‘ - %sisn (B.‘,“%)\ (2.

for1 <i<M1<j<2

In the following sections we assume, for sake of simplicity, that  is a straight-line polygon.

41
We will make comments on a curvilinear polygon at the end of the paper. By B;  (I') we denote for

¢ ¢
I<i<Mthespace [ B;(T)x [I Bj (T,).

0< 3, <} 1<B,<1

In this paper we consider the Dirichlet problem of the Laplace equation

Au=0inQ
(2.3)
U|p =8
and the Neumann problem
Au=0in Q
2.4
B (2.4)

—— _—_g
anr




du

where 5, means the normal derivative with respect to the unit outer normal n, and g satisfies
[gds =0 (2.5
r

Combining Theorem 2.1 of [4] and Theorem 2.2 above we have the following theorems.

1.2 . S . ; . .
Theorem 2.3. If g € B3 (T) N CYT) with 3 = (3,,35..8y) 3, = (3,13, 0 < I, < L
1 <i< M, 1<]j <2 then the problem (2.3) has a unique solution u ¢ BE(Q) with 3 given by

3,=3 48 >1-F
(2.6)
3,->1——g;1f3:§1—1

-

where J: satisfies (2.2).

0.1 . .. R . .. .
Theorem 2.4. If g € B (T) with 8 = (8,828 p)s 3, = (5:1.8,2), 0 < J,, < L1 <i <M
1 < j £ 2. then the problem (2.4), (2.5) has a solution u € B';(Q) which 1s unique up to a constant

with 3 given by (2.6).

3. Boundary Element Method for the Neumann Problem

We consider the Neumann problem (2.4) with solvability condition {2.5). As a consequence of

Theorem 2.1, we obtain

On

A combination of Theorem 2.1 in [4] and Theorem 4.5 in [6] leads to the resul.:

2 0, -
Theorem 3.1. Let u € Bg(R), then Qul ¢ g. l(I‘ with 3. . given by (2.1).
B T B g

0,1

Theorem 3.2. Let g € By (T) satisfying (2.5) then there ensts u € B;(Q) solving (2.4) with B given
1,2 .

by (2.6). Furthermore ulr € B (T) with 3 satisfying (2.1).

Proof. Due to Theorem 2.2 there exists a G € BL-(Q) such that Gl = g. Then by the definition of
1/2 1/2

Bﬂ/- (T), we have g € Bﬁ/- (T) with B8° satisfying (2.2). Then by Theorem 3.2 in [4] problem (2.4) has

a unique solution u € B;(Q) (up to a constant) with 3 satisfying (2.6). Then applying Theorem 2.1

1,2 -
we have u| € B (I') with 3 given by (2.1). 0




Re . .rk 3.1. In general. we have J = J+¢ with some ¢ > 0. According to (2.1). (2.2). and 12,6, 3,
{resp. 3|.2) depends on the interior angle », and on Jl as well as 3_1 iresp. -Iju;?- For instance, \f

9 0 . . , . - . , A
g € B3 () M Bs _(T,_)).0< 3, .3, <1i wehave J, = max(J, .3, .) + § by 1220 Since

0 < w, < 27,1 - }‘ < % < 3: and J, = .3: by (2.6). Due to (2.1) :-3‘1 € (J,— 1.5 hence
3,,>3,-} = = max(J3, 3, 1.2) 2 ¢, . For the other cases the relations between J,. J,. J,_. rresp.

3 +1). and w, can be derived similarly.

Next we derive a boundary integral equation tc solve the Neumann problem (2.41. Inserting

the fundamental solution v = —,)Lﬂ €njx —y| of Au = 0 into the secor.d Green formula
J(Auv —uA\)dx:I(uQX —vg—g)ds ERE
0 r n n

we get the representation formula for x € Q

8 Ou(y)

ufx) —)l— _[ a— £n[\(—\lu yids(y) — % f 5 En|x —vlds(y) (3.2
- F T dny
which yields on T the integral equation
Du:(I—K')g—g (3.3)

with the integral operators for x € T

Du(x) = 71’6?1, —ylu(y)ds(y),

=

and

% 6u(x) - _

Hj—

] by %‘n%—’ ds(y).

Now, equation (3.3) and the boundary conditions in (2.4) lead to the first kind integral equation (see
(12])

Du=fonT (3.4)
where f = (1—K')g. There holds the following result:

0,1 .
Theorem 3.3. For given g € By (I') satisfying (2.5) with B as 1n Theorem 2.4, the integral equation




(3.4) together with the side condition
fuds =1 3.5
r
1.2 -
has a unique solution u € By (T) uith 3 determined by (2.1) and (2.6).

Proof. Firs. from Remark 3.2 and Lemma 3.2, below. we have g € Hul/zif).

By Theorem 1.5 (ii) of [12] together with uniqueness of the system (3.4). (3.5). its solution u

exists uniquely in Hl/'( ['). Inserting this u and the boundary condition g = ?—-‘—li into (3.21 we define
for x € Q
ad — 1 6 ) ‘ — 1! . { 2
i{x) = 5= I En)x—vju(y)ds(y) ~ o | g(¥y)énix— y!dsiy). 3.6
2 dn, 2
r r
By {12} & € HYQ) .solves the Neumann problem (2.4). Due to the derivation above v = i€

H;/Q{F) solves the integral equation (3.4).

On the other hand from Theorem 3.2 we know that for g € B?{:(I—) there exists a unique
solution {up to a constant) U € Bg(Q) of the Neumann problem (2.4) with J satisfving (2.6:. Bu:
from the definition of Bg(Q) we have U € H'(‘:). Henced — U = constant on Q. But for v = G‘I-
we have u—v = constant on [ where u ¢ Hl/z(r) solves the integral equation (3.4). Hence

2

1.2 -
u = Ulp 4 c. ¢ = constant, and since L’}r € B3 (T) due to Theorem 3.2 for 3 satisfying (2.1}, the

1.2
assertion u € Bz (') follows. 0

In the proof of Theorem 3.3 we made use of the following results.

1/2

Lemma 3.1. Letge€ H (I) with 0 < 3 < 1, theng € (B @)’

Proof. We may assume that [ = [0,1], and . = xdx. xel,0< 31 < For any v € H'/*(I)
8

I

H - H . B 5 ,
[ avaxl < (1" gdx)" (1007 dx)" " < gl o0 (fx7 1 fdx)"?
I I 1 Hy (D)1

Since 0 < B3, < }. there exist integers p,q such that £ 4+ ¢ = 1, and 28,p < 1. Therefore by the

L
q

O

imbedding theorem (see, e.g., [16])

-23, 2 —2§1p 1/p 2q 1/¢ 2 !
{x Iv|%dx < ({ x dx) (Ilvl dx) < Clivllg, (1) < Clﬂllﬂm(”




and

which leads to the conclusion.

0]

00 : -i/2
Lemma 3.2 Ifg € Hi (I).0 < B < i theng 2 H™V/

(T

[T

1/2

Proof. First from [26] we observe that for v € H''°(T) there Yolds

M
Sl

< Clvll o,
= HYHT) T Migirz

3

EYEN

with a constant C independent of v and the length of T,. Hence we obtain for g € HJ NI

[gves M pj gvds M

' r ; .
Helt _ = <C Y ——— <C Y ligll oy < Cigll 40
H™V(T) I'\HHIN(F) N B R H: (I)

with a constant C. Here we have made use of Lemma 3.1 and taken I';, = I. Hence by the definition

of H™'/*(T) the assertion follows. O

01
Remark 3.2. Definition shows that g € B ('} belongs to B3(T) with

e

{[3{ for0<3‘<

3,-1% forl< 3 <1

[T

0,0 ;
Furthermore we have B%(r) C Hj (T) due to the definition of B%(F) and therefore by Lemma 3.2 we
0.1 -
have g € Bz (T) belongs to H 1/2(1‘).

Now we discuss the numeri-~i solution of the system (3.4), (3.5) by the h-p version of the

Galerkin boundary element method.

Let Q2 be an L-shaped domain as shown in Fig. 3.1. We assume Jor simplicity that the solution

. 812 .
u of (3.4), (3.5) belongs to B},(I’) (resp. BE(I‘)) with oii, = ly| 12 g

Paay _on 1
5, =Ix| ™, 5 < By12801 <3

(resp. 2 < B, 4, B7, < 1) and @a_ = 1for3 <j <6,




10
'
A y
T
1 9} I3
r,
o\ L2 |
o -
1 r
Is
1 l }
L 1 1
l 1
Fig. 3.1. L-Shaped Domain Q.
i.e.. the singularity occurs only at the origin. For example this is the case of u = t'/? sin % on I (resp.
273

T

9 ..
1 cos 3 8) where (r.8) denote the polar coordinates centered at the origin.

Let o € (0.1) be the mesh factor and n, integer, be the number of layers, and let I', |, 1 <i <
I(j) 1 € j < n+1 be the boundary elements such that dist(O.I",.J) = "t
dist(0.[, ;) = 0. 1 <i < 1(j). Then Iy = {T

.1l <j<n+land
v 1 €1 <)) 1 € < n+1} is called the geometric

mesh on [ associated with o and n. Fig. 3.2 shows a sequence of the geometric meshes with ¢ = 0.15.

n=1 - n=2

I-'3.2 FZ,Z FS.B rZ.B
I S » L
4,2 1,2 4,3 g 1,3

L. _ ™ L.

T y ] L2,
5,2 1'" | 5,3 F

Is.2 Te,3 !

1 1 1 1




Mesh >

Fig. 3.2 Geometric Mesh 5, n = 1.2.3, ¢ = 0.15.

n=3
N3
1 oo,
AN
cr_[_ozl“
1
e ] + ] {

Fig. 3.3. Geometric Mesh Q,.n = 3. ¢ = 0.15

Le« P = {p;;,, 1 €i<1(), 1 <j < n+1} be the degree vector with p;; > 1 integer. The

boundary element space associated with the geometric mesh [': and degree vector P is defined as

SP(ry) = {¢ |¢|ri ) is a polynomial of degree < p, ;}
and

§P(r7) = SP(ry) nco(r) c BY4(T).

The geometric mesh T, can be extended to a geometric mesh Q, on 0 as shown in Fig. 3.3.

Therefore the geoemtric mesh ', on 8Q can be defined as the trace of the geometric mesh




B

0, = {Q‘_). 1 <i<1I(§).1 <) <n+l}.

re. I'L = 0Q,, N dQ. Hence the space S”(T5) is actually the trace spaces of SFIQL). ie..

J
S7(T3) = {olp: 0 € $7(27))
and

n

§7(r) = {elp: @ € S7(Q7) N CQ)}.

For details of the definition of the geometric mesh on a curvilinear polygonal domain Q and the finite

element space S”(Q,). see 3], 07, (17).

From [17] we quote the following approximation property of SP(Q:\.
Lemma 3.1. Letu € B;(Q) with &5 = Y. 0< 3 <1 For any o € (0.1) there erists w € SP(Q:)
N CYQ) with P,, =p; 2 landju < p, <nv, 0 < p < v < oo, which satisfres

J

fu—wl| < Ce™'”

HY(Q)
where n 1s the number of layers of the geometric mesh Q:, and C,b are some constants depending on 3

and o but not on n.

By the trace theorem we know that ép(l':) c B'/?

(). The corresponding boundary element
0.1
Galerkin procedure for the integral equation (3.4), (3.5) reads: For given g € Bj () find

up € SP(T5) such that

and

where (-,-} denotes the duality between H"l/z(l“) and HI/Z(I‘). We have the following approximation

result of the boundary element Galerkin method.

Theorem 3.4. Letu € B;‘,(F) (resp. B;(I‘)) be the solution of the mtegral equation (3.4), and T be the
boundary of the L-shaped domain as shown in Fig. 3.1, where B.-_,- = Bl.l = 32.2 =03 <1<6,
=12 andé < Bm, [92.1 < i (resp. 2 < 51.2' [72'1 < 1). Let l‘:, o € (0,1) be the geometric mesh




on T: and let SP(T,) denote the boundary element space defined above with P, = p, 2 L
1w <p, v, 0 < p < v < oo Then the boundary element Galerkin solution up of (3.7} converges
fo u n H’”(r) ezponentially, te.,

.1/2
e-DN

“U"UPHHx/:’ <C (3.8)

()~
where N is the number of degrees of freedom, C and b are some constants depending on o and 3 but

not on N.

Proof. Note the operator D in (3.4) is strongly elliptic in HI/Q(I‘), i.e., satisfles a Garding inequality
in H'/*(T') (cf. Theorem 1.i5 (i) in {12]). Hence due to [19], [27] any conforming Galerkin scheme

converges in H1/2(F), and we have

[u—uplf <C it fu—wy
pll g2 ! pllgise

(M)~ w,eSP(ry) ()

Let U € B:‘;(Q) be the solution of the boundary value problem (2.4). (2.5). Q: be the
geometric mesh on €, ard SP(Q:) N C°(£2) be the 2D finite element space. By Lemma 3.1 there exists
a W, € S(Q5) N C%Q) such that

1V =Wpllgr ) € Cre ™" (3.9)

where n is the number of layers of Q:.

Let wp = W,,ir, then w, € S”(r;‘), and by the trace theorem

(3.10)

”“"WP“HI/z = [lUlp - wPlr“HI/2 < CllU—W,i]

(I) (r) = BY(Q)

Now, (3.9) and (3.10) together yield

-3
< Ce V"

”“"‘wpnﬂx/z(r) <

Note that I(j) < k uniformly with respect to j, 1 < j < n+1. Hence N < kn?, where k is some

constant indeperdent of N, which leads to (3.8) immediately. O




4. Boundary Element Method for the Dirichlet Problem

In this section we consider the Dirichlet problem (2.3).

Lemma 4.l. Ifg € Bé-(f) then g € Hl/'( 0.

[N

1
i

1.2 2, . 2 , )
Proof. Since g € B3 (I') gir EHs( )for0<3 <§0'gr € Hj (I,) for 3 < J, < L.
1 <1< M By Theorem 2.2 there exists a G € H (Q) with 3° aansf\lng (2.2) such that G [ = ¢.
By the definition ofH3-( ), G € H'(Q). Thereforeg € H'/*(I). c

Theorem 4.1. Let g € Bi:,'.( rNnn CO(I‘). Then there erists a unique solutton u € B?q(Q) of (2.3} with
0.1 -
J satisfying (2.6). Further 6:11 € B3 (T) with 3 satsisfying (2.1).
r
Proof. By Theorem 2.3 the problem (2.3) has a unique solution u € B;(Q) with 3 satisfving (2.6).
Therefore, D%u € Blg(Q) for [o] = 1

01 -
Applying Theorem 2.1 we obtain 5‘;1 € B3 (T} with J

r
satisfving (2.1). O

Next we derive a boundary integral equation for (2.3). We introduce the integral operator

u(y)
VG = - 4 [ T, teloyi(). xeT (4.1)
and
Ku(x) = - L 5?1— tob—ylu(y)ds(y), x € T (4.2)
r

Taking the limit x € T in (3.2) we obtain via the well-known jump relation for the double layer

potential K the integral equation on T

Y g—:(x) = (1+K)u(x), x €T, (4.3)

Insertion of the boundary condition of (2.3) into (4.3) leads to the first kind integral equation

U_fonl (4.4)

<
Q>|Q>
=}

with f = (14+K)g for which there holds the following result.




Theorem 4.2. Let cap(T') # 1 where cap(l') 1s the capacity (or conformal radius) of I'. Then for

1.2 01
giren g € Bz (T) N CYT) there ezists ezactly one solutton u € B3 (I') of the integral equation (4.4,

. dn
with 3 given by (2.1) and (2.6).

9

1.2 2
Proof. From Lemma 4.1 we have that g € B3 (I') implies g € H”‘(I‘). By Theorems 3.5, 3.8, and

3.9 in [13] the integral equation (4.4) has a unique solution 24 ¢ H™'/?

n (T) for given data

g€ Hl/:(F). Then inserting this g—g together with the given data g = u into (3.2) we define
G(x) = ‘)L _| lnix yig{y)ds(y) — ‘71— J g—-— Jenjx —vids(y). V x € Q. (4.3
My o T

By Theoremn 3.9 in [13] we know @ € H'(Q) and solves the Dirichlet boundary value problem

3i
(2.3). Also n

uniqueness of the solutior of (4.4) in H™ E {I') we have

€ H—I/Q(F) satisfies the integral equation (4.4} due to the definition of i. Due to the

du _ i
on ~ bt

By Theorem. 4.1 there exists a unique solution U(x) € BE;(Q) of (2.3) with J satisfying {2.6).

0.1 -
and g—g € Bj () for 3 satisfying (2.1). Since B3(Q) C H(Q) we have i = U by the uniqueness of
: . a_u _ 90U 0. _ du
the solution of the Dirichlet problem. Hence anl. = oo c € B3 (). But we also have CT' o

completing the theorem.

(]

Now we consider the rate of convergence for the h-p version of the boundary element Galerkin
method for the integral equation (4.4). For simplicity we assume again that {2 is the L-shaped domain

shown in Fig. 3.1 with cap(TI') # 1 and that g and the solution Qu (4.4) have a singularity at the

On

origin only. Then the geometric mesh [, on T and the boundary element space SP(F5) are defined as
in the previous section. They are the traces of the geometric mesh Qo on Q and of the finite element

space S° (Q ), respectively. Obviously §7~ 1(1‘ yCLI)cH l/2( ).

1.2
The Galerkin procedure for the integral equation (4.4) reads: For giwveng € Bj (I') n C(I")
find ¥, € SP7H(T7) such that for all ¢, € S*™(T7)

Ve ép) 2 (1+K)g,¢p): 2y (4.6)
L¥r) = L¥(T)

For the boundary element solution ¥, we have the following approximation theorem.

Theorem 4.3. Let g% € Bg(l‘) (resp. BE(F)) be the solution of the sntegral equation (4.6) where I unth
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cap(l) # 1 is the bou dary of the L-shaped domain as shoun in Fig. 3.1. and .’.31.1 = 3x2 = J,,.
3 £1 €6 ) =12 ;< 3”. 531 < % {resp. g < 31‘3. 33‘1 < 1). Let r:. o € (0.1) be the
geometric mesh on [ aad Sp_l([':) be the boundary element space defined in previous sections with
P, =P, 2L jp<p; <wvn0<pu<v<x Then the boundary element Galerkin solution v, of

(4.6) converges lo du ,, H—l/z(l‘) ezponentially, 1.e.,

on

) _a_ul —bN!/? -
lbp an H-l/:(r) S Ce (4.7

where N ts the number of degrees of freedom, and C, b are some constants depending on o and 3. but

nol on N.

Proof. Since the cperator V is strongly elliptic, i.e., satisfies a Garding inequality in H " *(T) (cf.
Theorem 2.19 in [13]), any conforming Galerkin scheme converges, and we have
. du : . du
= = Wpl s1ip, . <C inf I— - wpl R (4.8)
|8n H / ([‘) WPESP‘l(F:) 3n ) H 1/ (F)

Let V be the harmonic conjugate of the solution U of the boundary value problem (2.3). Then

V satisfies

AV =0in @
(4.9)
<9_V1 =9 _.i
3Sr—3nr ’

and V € B;(Q). Following the proof of Theorem 5.1 of [7] we can show that the 2D finite element
solution V, € SP(R25) N C°(Q) of the Galerkin equations for (4.9) satisfies

IV =V,l| <Ce " (4.10)

H'(Q)

where C,,b, are independent of n and p. Furthermore

av 1,0
Vp = 6—spr = kp € ST (T0),
where kp is the projection of k on SP-I(F:). Therefore we have with g—g = %% (compare Theorem
r
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4.2} and using (4.9)

oL A

Ay -
an "lu=%n dnip s II‘

(4.11}

H %y [\os — os

_|rav _ 8V
|( p>p|H’”2('r)

From Lemma 3.2 in [25] it follows that w € Hl/z(l") implies for the derivative w' € H™'(T). Hence

there exists a constant C such that

av oV,

3s KlH'l/z(I’) < CHV—VpHHx/z

(T)y

Therefore together with the trace theorem we obtain from (4.10) and (4.11)

du

’ . —bln
8_[1 - vPaH—l/:’(r) S CH\ _\IP”HI(Q) S Cle

(4.12)

Now. (4.12) together with (4.8) yields (4.7) by noting that N < kn® for some constant k independent of
N. 8

Remark 1. The regularity of the solutions of the boundary integral equations for mixed boundary
value problems and the exponential rate of convergence for the h-p version of the boundary element

Galerkin method can be proven similarly, but we will not elaborate it here, see [4], [6], [5]. [7]. [13].

Remark 2. In previous sections we assumed that 2 is a straight-line polygon. If Q is a curvilinear
polygon with a piecewise analytic boundary, the solutions of the boundary value problems (2.3) and
(2.4) belong to B;N(Q) for any ¢ > 0, (see (5]). Then it could be proven that the solutions of
equations (3.4) and (4.4) are in B},,i,(r) and Bgi((l") respectively. Thus Theorems 3.4 and 4.3 remain
valid.

Remark 3. The geometric mesh shown in Fig. 3.2 is designed for the problems with a singularity at
only one corner. But it is not difficult to generalize the above technique to the problem with
singularities at each corner of T', and the exponential rate of convergence of boundary element Galerkin

solution can be proven again.
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